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1. INTRODUCTION 

One of the most serious difficulties encountered with the numerical solution of 
nonlinear time-dependent problems is known as “blowup.” Typically this means 
that the numerical solution suddenly and usually with little warning becomes 
unbounded even if the analytical solution is known to be well behaved for all time. 
This phenomenon has been investigated for problems involving nonlinear terms of 
the form UU, by Fornberg [S], Chin et al., [3], Kuo Pen-Yu and Sanz-Serna [13], 
Griffiths [lo], and Briggs et al., [a], among others. For more general nonlinear 
terms very little seems to be known. 

It is well known that the nonlinear Schrbdinger equation (NLS) 

iu,+u.,+q lu/2u=o, i2= -1 (1) 

where q is a real parameter, is analytically unstable in the sense to be explained in 
Section 2 (see also Whitham [22], Stuart and Di Prima [21]). This is not uncom- 
mon among nonlinear dispersive waves in general and it plays an important part in 
the long time nature of the solution (see, e.g., Yuen and Ferguson [23]). This 
analytical instability also has important consequences for the numerical schemes 
used to solve nonlinear dispersive problems. Accordingly the main purpose of the 
present paper is to investigate some of the consequences of analytical instability for 
the numerical solution of the NLS. In particular we show how the analytical 
instability is reflected in various numerical schemes. We also show, mainly through 
numerical experiments, that the analytical instability may cause nonlinear blowup 
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of the numerical scheme. However, a full or even a partial explanation of blowup 
for the NLS is not yet within our grasp. In fact, our analysis is based on a 
linearization and its applicability is therefore limited. For instance our analysis is 
not able to predict the long time behaviour of the solution and certainly gives no 
indication of the phenomenon of recurrence which will be discussed in Section 7. 

In the next section we discuss the analytical stability properties of the NLS. In 
subsequent sections we investigate how the analytical instabilities are reflected in 
first a semi-discretised and then a fully discretised numerical scheme. In Section 5 
we elaborate on the relationship between the analytical and numerical stability 
results. We then, in Section 6, give a numerical example illustrating one of the con- 
sequences of the numerical instability, namely blowup. The capability of our 
numerical methods to model recurrence is illustrated in Section 7. We conclude 
with a few general remarks concerning nonlinear instability. 

2. ANALYTICAL INSTABILITY 

Consider the linear dispersion equation 

iut+u,,=o, i2= -1 (2) 

which has solutions of the form 

u(x, 2) = a exp i(kx - wt) (3) 

where a is a complex constant and w  satisfies the dispersion relation 

w=k2. (4) 

The NLS (1) also has solutions of the form (3), with the dispersion relation given 
by 

w=D(k,a):=k2-q Ial’. (5) 

The fact that (5) involves the wave number k as well as the amplitude a causes the 
solution to be unstable (Whitham [22, Sect. 14.21). The instability can also be 
shown to exist by reasoning along similar lines as Stuart and Di Prima [21] and 
Whitham [22, Sect. 15.61. Assume a solution of (1) of the form 

u(x, t) = a exp i(kx - D(k, a)) t + c(x, t). (6) 

Substitute (6) into (1) and assuming o to be small, keep first-order terms in cr to 
obtain 

ia, + CJ,, + qa* exp[2i(kx - D(k, a) t)] o* + 2q /aI* TV = 0 (7) 
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where C* is the complex conjugate of 6. It is convenient to define E(X, t) by 

CT(X, t) = UE(X, t) exp i(kx - D(k, a) t) (8) 

which enables us to write (6) in the form 

u(x, t) = exp iq (a(’ t z(x, 2) (9) 

where z(x, t) is given by 

z(x, t) = a exp i(kx - wt) + u&(x, t) exp i(kx - wt) (10) 

with w  satisfying the dispersion relation (4). From (10) it is clear that E(X, t) can 
also be considered to be a perturbation of the solution (3) of the linear equation 
(2). Moreover, since u(x, t) is a solution of (1) it follows from (9) that z(x, t) 
satisfies 

iz,+z,, -q la12z+q lzl?z=O. (11) 

We return to these facts when we consider the stability of our numerical schemes. 
To obtain the analytical stability results we assume CJ to be given by 

~(~,t)=a(a,(t)expi(k,x-D(k,,a)t)+a,(t)expi(k,x-D(k~,a)t)) (12) 

where k, and k, satisfy the “resonance” condition 

k, +k,=2k. (13) 

Equation (13) will be satisfied if both the upper and lower side modes of k are 
present in (12) for example, if k, and k, are given by 

for any value of p. 

k, =k+p, k,=k-p 

Substituting (12) into (7) and making use of (13) yields the following equations 
for al(t) and I, 

ici, + q (aI2 a, + q (aI2 a: exp iRt = 0 (144 

ih,+q la12a,+q ~aJ2u~expiS2t=0 (14b) 

where 

f2 := D(k,, a) - 2D(k, a) + D(k2, a) = 2,~‘. 

From (14) it follows that a,, a2 satisfy 

iii,+Q+iq ~a)‘!2ui=0, j= 1,2 
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with solution 

where A,, 2, satisfy 

aj = cj exp iii t, j= 1, 2, 

~2-QA+q lal’D=O. 

Thus, I is complex and the perturbation a(.~, t) grows exponentially in time 
whenever 

9 > 0, p2 < 2q jai’. (15) 

The situation described by (15) is shown in Fig. 1. It is clear that all the lower 
modes (II =0 excluded) are unstable with the exact number of unstable modes 
determined by the magnitude of the nonlinear contribution q la12. 

Of course, our analysis is only valid for a short time while the perturbation u is 
still small. The long time behaviour of the solution is determined by various conser- 
vation laws such as 

and 

$ jy- (la-G t)l’-+q lu(x, t)l”)dx=O. zr 

Making use of (16) it can be shown (Glassey [9], Strauss [20]) that the solution 
of (1) and its first derivative remains bounded in the L2 norm for all time. The 
initial instabilities will therefore not grow indefinitely. One numerical example of 
the long-time behaviour of the solution is given in Section 7. 

FIG. 1. Stability regions for the analytical solution. 
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3. SEMI-DISCRETISATIONS 

We now consider 

iu,+u,,+pu+q lu12u=0, i2= -1 (17) 

where p is a real parameter. The addition of the linear term pu in (17) allows us to 
obtain (11) by putting 

P= -4 Ial2 (18) 

and also by putting q = 0 in (17) we can compare our results with those which are 
obtained from an analysis of a linearised version of (1). 

In order to solve (17) numerically we follow Grifliths et al. [ 111, put 

u(x, t) = u(x, t) + iw(x, t), 

and rewrite (17) as the real system 

u, + Au,,y + pAu + qf(u) = 0 (19) 

where 

u := (u, w)‘, A := 
0 1 ( > -1 0’ 

f(u) := (u’u) Au. 

The space variable in (19) is now discretised by using Galerkin’s method with 
piecewise linear test and trial functions and product approximation (Christie et al. 
[4]) for the nonlinear term. Thus we obtain 

MiT+$‘U+pQU+qMF(U)=O (20) 

where a dot denotes the total derivative with respect to time, h is the uniform space 
discretisation and 

21 z 0 
Z 41 z 

. . 

z ‘41’ z 
0 Z 21 ly 

s := 
-2A A -2A A 
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u := (U, )...) U,)‘, uj := (Vi, Iv,)’ 

F := (F ,,..., FN)T, Fj := (UTU/) AU,. 

It should be pointed out that S simply represents a central difference replacement of 
the second derivative appearing in (1 ), when written as a system of two real-valued 
functions. M and Q arise from the use of the Galerkin method, A4 of course being 
the mass matrix. 

If we now consider a perturbed solution of (20) of the form U + 6, where 6 is 
assumed to be small, we find to first order in 6 that 

Ah++-+pQh+qT6=0 (21) 

where 

. . . . . . . 2vw ) B := 
-(3v2+wZ) 

the values in B being the local constant values of the solution of (19). 
We now assume a solution of (21) of the form 

Sj( t) = d(t) exp i&j 

to obtain 

y,i - (4s2/h2) Ad + ypAd + yqBd = 0 

where 

Using 

s:=sincrh/2, ~~=~:=l--$r~. 

(22) 
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in (22) corresponds to mass lumping and apart from boundary conditions, the 
choice 

yt= 1, y=l 

implies the use of the finite difference scheme of Sanz-Serna and Manoranjan [ 191. 
Rewriting (22) as 

i=Gd 

it follows that the eigenvalues, A, of G satisfy 

det(y,AZ- (4s2/fz2) A + ?lpA + yqB) = 0 

or 

assuming 6 is a perturbation on a constant modulus solution, i.e., 

I2412 = Ial*. 

For stability we require the eigenvalues to be imaginary which will be the case if 

06 ( $-yp-3yq ,a,* )( 
2 

$-YP--Yq b12 
) 

. (24) 

The stability regions given by (24) are shown in Fig. 2. From (24) and Fig. 2 it is 
clear that the linear term pu in (17) stabilizes the numerical scheme if p > 0. For 
instance, if 

yp>4/h2 

Stable 

4s2/h2 

Stable 

FIG. 2. Stability regions for the semi-discretised scheme. 
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then all modes c1 are stable for all values of the nonlinear contribution yq (al*. It is 
also clear that no instability arises if the linear equation obtained from (17) with 
q = 0 is used. 

Finally we observe that the choice (18) in (24) implies that I is real and the 
scheme unstable if 

Equation (15) is obtained from (25) by letting h + 0 with c1 playing the role of p. 
We elaborate on this observation in Section 5. 

4. LEAPFROG SCHEME 

The time variable in (21) is now discretised by the leapfrog scheme (Mitchell and 
Morris [16]), to give 

M6”+1 - iMY- ’ + 2rS6” + 2zpQS” + 2zqlW = 0 (26) 

where z is the time step and 

r = z/h2. 

We assume a solution of (26) of the form 

ti; = d” exp iahj 

and deline the amplification matrix, 6, by 

It now follows that the eigenvalues A of G satisfy 

det(12y,Z- y,Z+ (2ryp - 8rs2) AA + 2zyqAB) = 0 

or 

where 

y;A4 + 2bA2 + yf = 0 (27) 

b := -yf + 2(4rs2-zyp- 3zyq la12)(4rs2 - typ-~yq Ial*) (28) 

where we have again assumed that 6 is a perturbation on a constant modulus 
solution, i.e., 

Iu12 = la12. 
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For stability we require 

14 d 1 
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or equivalently from (27) 

b’/y; < 1. (29) 

The stability condition now follows from (28) and (29) and is given by 

YP-39 blZ 
)( 

The stability regions given by (30) are shown in Fig. 3. 
Again we find that the choice (18) leads to (25). Equation (30) also imposes a 

restriction on the time step r which for the linear dispersive equation (2) becomes 

t < $y,h’. (31) 

Finally we note that mass-lumping, 

increases the maximum value of the time step given by (31). On the other hand 
y = 1 in (25) increases the range of unstable modes. 

Stable 

FIG. 3. Stability regions for the fully discretised scheme 
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5. RELATIONSHIP BETWEEN ANALYTICAL AND NUMERICAL STABILITY 

In the previous two sections we have seen that discrete analogues of the 
analytical result (15) may be obtained by using the choice (18) in (17). This result 
needs more explanation. 

In Section 2 we obtained the analytical stability result by considering (1 l), i.e. 
(17) with p given by (18). We assumed the solution of (11) to be a perturbation of 
the linear equation (2), i.e., we assumed 

z=l+6 (32) 

where 1 is a solution of (2) and 6 is small (cf. (10)). A specific choice for 6 leads to 
(15). 

Proceeding as in Section (3), the approximation Z of the solution of (11) satisfies 

Mk+$SZ-q la12QZ+qMF(Z)=0. (33) 

In order to follow the analytical arguments as closely as possible we now assume 
that 

Z=L+l$ (34) 

where 4 is small and L satisfies 

ML++L=o (35) 

with L&= 1~1~. From (33), (34) and (35) we obtain to first order in 4, 

(36) 

where 

20 D 0- 

D 40 D 
. . . . . . . . . 

D 40 D 
0 D 20 

and u and w  denote the real and imaginary parts respectively of the solution of (11). 
Equation (36) may also be obtained by substituting (18) with u* + w* = Ial2 into 

(21) which, as we have already observed, leads to the discrete analogue (25) of the 
analytical result (15). 
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Finally we observe a difference between the analytical and numerical stability 
results. In the numerical case we did not have to assume a special form of the per- 
turbation as we did in the analytical analysis, cf. (13). From this we conclude that 
because of the discretisation, resonance will always take place in the numerical case. 
In this sense the numerical solution appears to be more unstable than its analytical 
counterpart. 

6. NONLINEAR BLOWUP 

In order to illustrate the significance of the instability to the performance of our 
numerical schemes, we solve (1) by using the predictor-corrector scheme suggested 
by Grifliths et al., [ 111; i.e., we solve 

Mu* = Mu” - rsu” - rqMF(U”) (374 

(M+;+Jn+~=(,$S)Un-,,,(u*;u”) (37b) 

where r is the fixed time step and 

r = s/h’. 

Grifliths et al., [11] argued that it may sometimes be advantageous to consider the 
analogue of (37) as applied to 

which is given by 

u* = U” - zqF( U”) 

U n+l=U”-rqF (“* ;““). Wb) 

(394 

The energy at the nth time level, [,!?,I, defined by 

E; = UnTUn 

satisfies 

E;,, = [l +r2q2Ef1(1 ++r2q2E;1)([1 +;z2q2E:-J2- l)] E;. (40) 

It is clear that (40) allows a slow growth in the energy at successive time levels 
which increases with increasing values of tq and E,. Equation (38) is particularly 
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relevant if we solve the nonlinear Schrodinger equation (1) using the initial con- 
dition 

24(x, 0) = A (41) 

where A is a complex constant. For this choice of initial condition the analytical 
solution of (1) is given by 

24(x, t)=Aexpiq IAl* t, (42) 

a solution which is independent of x. Also, (42) is in the form of the fundamental 
mode appearing in (6), with k = 0. Thus, if we solve (38) using the initial condition 
(41) we expect a slow increase in the energy according to (40). We also expect 
round-off error to introduce side modes which will then grow exponentially 
according to (25). Since our numerical scheme does not conserve the energy which 
would keep this exponential growth in hand, we anticipate unstable behaviour from 
our numerical solution. 

q=8.0 q=6.0 q=4.0 q=z.o 

2c 

IE 

It 

lE,l 

11 

1: 

1 

‘I 

100 150 200 

Time IevelS no 

FIG. 4. The behaviour of the energy for various values of q. 
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The details of our numerical experiments are the following. We imposed natural 
boundary conditions at -5.0 and 5.0, i.e., we used 

0 = u,( - 5.0, t) = u,( 5.0, t) for all t. 

Using A = 1.0 in (41), h = 0.5, and z = 0.05, we solved (37) for q = 2.0, 4.0, 6.0, and 
8.0. In Fig. 4 we plotted the energy E, at the various time levels, n. 

As predicted by (40) the energy grows at an increasing rate for increasing values 
of q. However, after a certain time, which decreases with increasing q, the energy 
becomes unbounded, i.e., its value overflows the computer. Although the actual 
blowup itself is not explained by any of the results in the previous sections, some 
insight in the underlying mechanism causing this to happen might be obtained from 
the following observation. 

Accepting that for q = 2.0, the energy blows up after 230 steps, the transformation 

T’ = 5q 

would suggest a uniform decrease in blowup times for increasing values of q. This 
predicts blowup times of 115, 76, and 57 time steps for q = 4.0, 6.0, and 8.0, respec- 
tively. However the energy becomes unbounded after 92, 50, and 19 time steps. 

7. RECURRENCE 

For this numerical illustration we add a perturbation to the initial condition (41) 
containing side modes which satisfy the resonance condition (13). Accordingly we 
consider 

u(x, 0) = A + a(x, 0) (43a) 

where 

a(x, 0) = A(a,(O) exp(@x) + a,(O) exp( - @LX)). (43b) 

It is clear that (43b) is of the form (12) with 

k = 0, k, =pL, k,= -p. 

According to (15) the perturbation (43b) will grow exponentially whenever 

p2<2q (A12. (44) 

In order to observe this exponential growth numerically we need a more efficient 
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scheme than the one used in the previous section to solve (20). Using the midpoint 
rule we solve 

(,+~~~)u~+~=(,~,,)u.-,,,(ufl+l+u”) (45) 

for n = 1, 2,... . 
The nonlinear system of algebraic equation (45) was solved using a predictor- 

corrector procedure as in the previous section, but iterated to the desired accuracy. 
Thus, at each time step we used (37a) to provide an estimate U(l) of U”+ ’ which 
was then iterated according to 

(,+~,,)U(~+l)=(,~,,)U~-rilMF(U’i’:U”) k=l,2,...,m. (46) 

For this experiment we have found that 10 iterations (m = 10) were sufficient. 
The values of the parameters appearing in (43) were chosen to be: A = 0.5; 

a,(O) =a,(O)=O.l. Furthermore q=2, 20 elements and periodic boundary con- 
ditions over one space period 

were used. For these values of the parameters, (44) becomes 

,u*<1. (47) 

Three cases were investigated namely p = 1.1; p = l/a, and p = 0.4. According to 
(47) the first choice does not allow exponential growth in the solution. This is 
clearly illustrated by Fig. 5. The choices p = l/d and p = 0.4 are inside the 
stability limit (47) and the exponential growth in the solutions are shown in Figs. 6 

FIG. 5. Recurrence for b = 1.1. 
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FIG. 6. Recurrence for p = l/J. 

and 7, respectively. From these two figures a remarkable phenomenon is observed: 
The initial condition is periodically reconstructed even after fairly complex inter- 
mediate development, as in the case of Fig. 7. This phenomenon, which is not 
uncommon among nonlinear problems in general is known as recurrence and was 
first observed by Fermi, Pasta, and Ulam [7]. The connection between recurrence 
and the instability of the NLS was first pointed out by Yuen and Ferguson [24]. 
Incidentally, Yuen and Ferguson also gave numerical examples but used a 
numerical procedure entirely different from ours. 

In order to explain the complex behaviour in the terms of Yuen and Ferguson 
and also to monitor the evolution of a,(t) and az(t) appearing in (43b) the 
numerical solution at each time level t is written as 

N/2 - 1 

u,(t) = 1 akW expW~,)~ j = -N/2,..., N/2 - 1 (48) 
k= -N/2 

FIG. 7. Recurrence for p = 0.4. 

581.‘60/2-8 
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FIG. 8. Fourier transform for p = 1.1 

where N is the number of elements and 

2nj 
xj=-. 

PN 

The ak are evaluated by the fast Fourier transform. Initially (at t = 0), (48) consists 
of only the three modes ao, a,, and ael corresponding to A, Aa,, and Au, in (43) 
respectively, with most of the “energy” concentrated in the fundamental mode aO. 
In the stable case, p = 1.1, we observe from Fig. 8 that this energy distribution 
remains fairly uniform with time. However, in the unstable cases, ,U = l/,,/? and 
p = 0.4, it is clear from Figs. 9 and 10 that energy is transferred to the higher modes. 

FIG. 9. Fourier transform for p = l/,,h. 



STABILITY OF THE NLS EQUATION 279 

FIG. 10. Fourier transform for II = 0.4 

In the case of p = l/$, p falls within the instability region given by (47) and ~1, 
starts to grow exponentially as predicted. However, after a certain time the energy 
is transferred back to the fundamental mode and the original distribution of energy 
is regained. 

In the case of p = 0.4 energy is also transferred to the higher modes. However, 
since 

2~ = 0.8 

p and 2,~ fall within the instability region and not only CC, but also c(~ starts to grow 
exponentially. Since 2~ falls within the instability region the terms ~(~(f) exp(i2px) 
and a_*(t) exp( -i2px) appearing in (48) may be considered to be an unstable per- 
turbation in the same sense as (43). In this case, however, the perturbation has 
period z/p. Since we use periodic boundary conditions at -n/p and rc/p, i.e., a 
period of 27c/p, two peaks appear when TV* becomes unstable. In general, M peaks 
will eventually appear, where 

M = Integer( l/p) 

i.e., M is the integer part of l/p. 
Apparently, the unstable modes dominate in turn. For instance in Fig. 7 we see 

first one peak and then two peaks appearing. It is remarkable that the energy dis- 
tribution between the various modes will eventually return almost exactly to the 
initial state. 



280 HERBST, MITCHELL, AND WEIDEMAN 

8. CONCLUSIONS 

In the preceding sections we have shown that the analytical instability properties 
of the nonlinear Schriidinger equation have an influence on the various dis- 
cretisations. This is of special significance since analytical instability of the NLS is 
related to various important physical phenomena such as solitons or recurrence, the 
latter in periodic problems. These are precisely the phenomena that one would nor- 
mally wish to observe by numerical means. This of course implies long time 
integrations whereas our analysis only holds for short times while the perturbations 
are still small. At least we have shown that the numerical schemes start off in the 
right way. 

As far as the long time behaviour of the numerical methods is concerned, extreme 
care is necessary in order to obtain reasonable approximations. In the analytical 
case the instabilities are kept in check by the various conservation laws such as 
(16). Our numerical example seemingly indicates that numerical schemes that do 
not satisfy discrete analogues of these conservation laws are likely to behave badly 
in long-time integrations and that the solution may even become unbounded. This 
suggestion is investigated in more detail in a separate report (Herbst et al., [ 123). 
However, we did show our numerical schemes to be quite capable of approximating 
such a highly nonlinear phenomenon as recurrence. 
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